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GRAVITATIONAL POTENTIAL ENERGY OF THE EARTH:

A SPHERICAL HARMONIC APPROACH

David Parry Rubincam

ABSTRACT

A spherical harmonic equation for the gravitational potential energy of the

earth is derived for an arbitrary density distribution by conceptually bringing

in mass-elements from infinity and building up the earth shell upon spherical

shell. The zeroth degree term in the spherical harmonic equation agrees with

the usual expression for the energy of a radial density distribution. The second

degree terms give a maximum nonhydrostatic energy in the mantle and crust of

-2.77 x 1029 ergs, an order of magnitude below McKenzie's (1966) estimate.

This figure is almost identical with Kaula's (1963) estimate of the minimum

shear strain energy in the mantle, a not unexpected result on the basis of the

virial theorem. If the earth is assumed to be a homogeneous viscous oblate

spheroid relaxing to an equilibrium shape, then a lower limit to the mantle

viscosity of 1.3 x 1020 poises is found by assuming the total geothermal flux is

due to viscous dissipation. This number is almost six orders of magnitude be-

low MacDonald's (1966) estimate of the viscosity and removes his objection to

convection. If the nonequilibrium figure is dynamically maintained by the earth

•	 acting as a heat engine at one per cent efficiency, then the viscosity is 10 22 poises,

a number preferred by some (e.g. Cathles (1975)) as the viscosity of the mantle.
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GRAVITATIONAL POTENTIAL ENERGY OF THE EARTH:

A SPHERICAL HARMONIC APPROACH

IN'TRODUCTTION

Many quantities of geophysical interest, such as the earth's density distri-

bution, gravitational potential, and moments of inertia, may be expressed in

terms of spherical harmonics or integrals of spherical harmonic coefficients

(Kaula, 1968). Since the earth's gravitational potential energy has received

. attention (and spherical harmonic treatments) in the past, particularly from

MacDonald (1966), McKenzie (1966), and Kaula (1967), it should prove worthwhile

to derive a general equation for the energy from the viewpoint of spherical

harmonics.

We will derive here an equation for the gravitational potential energy for

an arbitrary density distribution and make a few simple applications with some

remarks. Specifically, we will investigate the energy released when a homo-

geneous earth differentiates into a mantle and core; compute the nonhydrostatic

part of the energy contained in the gravity anomalies in the mantle and ct U 7t;

show its relation to the elastic energy; and estimate a lower limit on the vis-

cosity of the mantle. We also hope to clear up at least some of the questions

surrounding the subject of the earth's gravitational potential energy.
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DERIVATION

The gravitational potential energy is given 5y

U=-2	 PMP{r') dvdv'.
v	 v 1r- r'1

(See Mac Donald (1966, p. 230), or an elementary textbook on electricity and

magnetism for the analogous electrostatic energy. The gravitational potential

energy is seldom discussed in geophysics textbooks.)

The singularity which occurs when P • i" appears to make the evaluation

of the integral difficult. We can get around this problem, however, in the follow-

ing manner. We can conceptually assemble the earth shell upon spherical shell

by bringing in matter from infinity and depositing it on the earth 's surface,

computing the work necessary to bring in each shell. The sum of the work done

bringing in all the shells then gives us - U.

Let us assume for simplicity that the earth is spherical and nonrotating.

Neither of these assumptions is restrictive and both will be discussed later.

Let us further assume that the earth 's density distribution may be expressed

in terms of normalized spherical harmonics:

Aw

s.

°D	 2

P Cr) = P (r, g5,,\) _	
L 74, (r) Yom: {^^ X)	 (1)

.0 m.0 i.1

Y^mi {q5, X) = Tim {cos O) cos MK, 
Y^m2 (4), 

A) _ 'Ft. {cosh) sinmh,

with



and Pool (r) = po (r),p002 (r) = 0. The Pa m (cos q5) are the associated Legemlre

polynomials, normalized so that

j' 1r/2
J	 [P'tm (cos q5)] 2 sin ¢s d¢> = 4 - 2 So.

and

[Y,t®(q6,x)]2 dA=4n
unit
sphere

where dA represents an element of area.

If we bring in a mass dm = p (r, 0 , a )dAdr from infinity and place it on the

surface of a partially-assembled earth of mass M and radius r (see Figure 1),

then the work involved in doing this is V(r, (p, X) dm, where V is the gravitational

potential. Bringing in more masses until we have built a spherical shell of thick-

ness dr requires work

	

-dU = dr	 f V (r, 4, X) p (r, (P, X) dA	 (2)
surface

where dA = r e sin ¢ 4d,\. (Strictly speaking, the layer does work on itself;

but this is of order (dr) 2 in the infinitesimals and may be neglected.)

The potential V may be expressed in terms of spherical harmonics (Kaula,

1968, p. 64):

R	 V (G, 0, X) = A^ 	 ^'tmi	 yt. (0, X)

3



where b is the radial distance to some external point and where

47r x4 p,^i (x) dx

L, =
(2t+1) Mr

with C,i = C^^ and C,^®z = Sj ® . The C^®i refer of course to the partially-

assembled earth and should not be confused with the present-day potential

coefficients.

The potential at b = r may then be written

f
t,x + 2 ;5t., (x) dx

	

4V (r, ^, X) = 47Y G  
	 2^ 1 rt+i	 %I

tMi	 ( + }

Substituting this expression along with (1) into (2) and worldng out the integral

yields

	

r r —^ + 1	 =

-dU= 167T 2 Gdr )7 p'F®i (r)	 xt +2 ;641 (x)dx

	

t ®i	 fo(	 + 1) 

by the orthogonality of spherical harmonics.

Adding on more shells until we reach the final radius R E of the earth gives

us our expression for the gravitational potential energy;

U	 Ut
t.t

where

16rr2G	
x	 r

	

Ut.t = - (2t + 1) f

E
 ptMi (r) r-^+ixt+ P {x} dx dr.	 (3)
 0
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We note in passing that our expression differs from McKenzie 's (1966)

equation (10); his expression deals with a layer of mass added to the surface

of a deformed earth with uniform density. (See Appendix 1).

Our equation differs also from that of Kaula ' s (1967) eq. (3) for the "energy",

or degree variance, which may be written

all _  ̂{C 	 st2.) 	 Et2
M	 M,

The two are related through our eq. (6) (see below).

RADIAL DENSITY DISTRIBUTION

As an example of eq. (3), consider the case of a spherical earth with a

radially symmetric density distribution. Then Pool (r) = po (r), p (r) = 0 for

tmi ^ 001, and the energy is simply

U = - 16 ," 2 G 
J 

•E po (r ) r 
fo 

r po (x) x2 dx d r ,	 (4)
0 

where a  is the mean radius of the earth. (We keep aE and the final radius RE

distinct for reasons made clear below.) This expression agrees with that of

Urey (1952, p. 174). For an earth with constant density PE the above equation

works out to be

3 
2EU=- 5 a =-2.24x 10 39 ergs

E

where ME is the mass of the earth and we have used the numerical values given

in Stacey (1969, Appendix E).

5
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An earth differentiated into a mantle and core with constant respective

densities PM and Pc and no change in mass or radius is a little more complex.

In this case the interior integral in eq. (4) is

3
Pc 3 for 0:5 r S ac

saw
and

ac	 (r3-q)

	

PC 3 + PM	 3	 for ac < r S aE

where ac is the radius of the core. Using this information the energy is

U - - 3 G CM,-M2]  [ 2 ml -3mz ] + m3 
[2m 3  + 5 (mi 

_ M 
2) ]

10	 ac	 as

= -2.45x 10 39 ergs

where

47T	 3
M1 = 3 Pc ac

47	 3mZ = 3 PM ac

4n	 3
M = 3 PM aE

and our numerical values have come once again from Stacey (1969). Nance

if a homogeneous earth differentiates into the present-day mantle and core,

6
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approximately 2.1 x 1038 ergs is released as heat, in rough agreement with

Urey (1952, pp. 174 •• 176), who used a somewhat different model of density

and took compressibility into account.

ENERGY IN THE MANTLE AND CRUST

We now turn our attention td the gravitational potential energy contained in

the gravity anomalies.

The density variations p^mi (r) give rise to the observed C, of the earth's

gravitational field. By choosing various models for the pltmi (r) and using the

known C'Qmi as constraints, we may use eci. (3) to estimate the gravitational

potential energy in the mantle and crust, where most if not all the gravity

anomalies are believed to reside. In particular, if we choose p„ mi (r) a (r/RE)n?

where n is an adjustable parameter, then

_	 M
p emi (r) (2^+1) (n+^+3) Ct. , r”	 E

477 RE

as may be found by substituting p ,tM, (r) in the equation for C,tmi ; giving

Uy 	 (2 t + 1) (n +t + 3) C	 GME	 (5)
'Lmi	 (2n + 5)	 t.i RE

If we require that n - co, then we are dealing with a surface density distribution

(Dirac delta function), and eq. (5) becomes

Vax = _ (2t + 1) C 2 GM g	 (6)
t®i — ^®i RE

7
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which is the maximum energy contained in each harmonic, since the material

is as far fro"i the center of the earth us it can be. The above equation may be

shown to agree with McKenzie's (1966) eq. (10) after some corrections have

been made to his expression (see below).

Most of the nonradial gravitational potential energy resides in the C201

term, due to the rrtational equilibrium flattening of the earth. What we would

really like to know at this point is the energy, due to nonhydrostatic equilibrium.

To find it let 4:, do the following: we stop the rotation of the earth and assume

that it relaxes to a spherical shape with radius a E , but retains the same non-

hydrostatic C,' as it did before. (This will not be strictly true, of course, but

makes for a simple case to analyze.) Then the gravitational potential enemy

contained in the important second degree (t = 2) harmonics is from eq. (6)

(going back to the C and S form for the potential coefficients)

Umax = - (A C2 + Cz2 + Sz2) 2 a^xE

where we have been careful to use n i5, the nonhydrostatic part of C„ o . Both20

C21 and S21 have been set equal to zero, in accordance with the small amplitude

of the Chandler wobble. Using the entries in Table 1 of Kaula ( 1967) as values

accurate enough for our purposes, namely

AC 20= 4.70 x 10-6

S 22 = 1.34 x 10-6

C22 = 2.40 x 10 6

T-



*, -

we obtain U 2 a = -2.77 x 1029 ergs as the maximum amount of energy contained

in the second degree harmonics. This is smaller by an order of magnitude than

McKenzie's (1966) estimate. The discrepancy will be commented upon below:

Probably a reasonable lower limit on the second degree energy can be ob-

tained from eq. (5) by setting n = 0, so that the anomalous density distribution

is spread throughout the earth; then

- 5.44 x 10 29 ergs S U 2 S - 2.77 x 1029 ergs,

and a guess of U2 T -4 x 10 29 ergs is almost certainly right to within a factor

of 2.

An estimate of the total gravitational energy in the earth for t Z 2 can be

found from Kaula's rule-of-thumb, as given in Kaula (1968, p. 77):

1	
C2	

10-10

mi

From (6)

GM2	
m

Ucoi ~' 2 E (10-10)	 z + 4 + 14

The series appearing on the right side may be evaluated with the help of Jolley

(1961, pp. 64-65, 240), and we have Uto1 = -6.5 x 10 29 ergs. A guess of Utot

-1 x 10 30 ergs is probably good to within a factor of 2.

9
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Our value of U max is almost identical with Kaula's (1963) estimate of

2.94 x 1029 ergs for the minimum second degree elastic shear strain energy of

the mantle. This is perhaps not a coincidence: rough equality is expected on

the basis of the virial theorem, if gravity and elasticity are the two sources of

potential energy and the velocity of the particles making up the earth are small

(see Appendix 2).

ENERGY OF AN OBLATE SPHEROID

We have assumed in the derivation for the gravitational potential energy

that the earth is spherical and nonrotating. Neither of these conditions hold

for the real earth, of course. However, the assumptions are not restrictive.

As far as rotation is concerned, the gravitational potential energy depends only

on the relat)ve positions of the particles composing the earth and not their

velocities, hence the rotation of the earth plays no part in the computation of

the potential energy. Rotation is important, of course, in computing the total

mechanical energy E of the earth, which is the sum of the kinetic and potential

energies. For simple rotation about the polar axis this is merely

E = 2 Cco 2 +U

where C is the polar moment of inertia, co is the angular speed, and other forms

of energy are ignored. As for sphericity, we may take the earth to be spherical

by letting R$ be the distance from the center of the earth to the highest point on

the planet (see Figure 2). In practice this will be the equatorial radius of the

_l
i

tt
y
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earth; thus our distinction between R E and aE , the two symbols commonly used

to denote the equatorial and mean radius, respectively. The density of the

imagined spherical earth now happens to be zero in the space between the actual

surface of the earth and the sphere. This poses no particular problems and is

no obstacle to a spherical harmonic expansion of the density distribution.

Let us compute the gravitational potential energy to second degree for a

homogeneous oblate spheroid as an illustration of this point. The result will be

used later to estimate a lower limit on the viscosity of the mantle.

Let the equatorial radius of the spheroid be R E and the eccentricity be e.

It may be shown from

'54: (r) = -1
J A (r, ^, ^) Y emi 

(^, X) dA
47T 

that

TOO, (r) = PE

	

_

	

for 0:5r  ^ R E (1 - e2)1/2

p201(r} =0

and

(1- e2}1/2 (R2 — 
f2)1/2

pool (r) = pE 	 e	 r
for R E ( 1-e2)<r SRE

p	
r — V/51

p 	
(1 _ e2)3/2 (RE — 

T 2)3/2 — (1 _ e2)1/2 (RE - r2)1/2

201	 2 E	 e3	 r 3	 e	 r
if

11



where R E(1 - ®2)1!2 is the polar radius. The other po i (r) through degree 2

are zero by the symmetry of the spheroid.

The above expressions may be substituted in eq. (3) to give U001 and U 20 .

The calculations are tedious in the extreme; only the final results will be given

here. They are

Uoo1~-1152GpERE jl-5e2-
8e4 +...^

U2o1 = - 115 2 G PE RE {,e40 + ...^

so that

U = Uoo1 + U2o1 ti- 16 7T 2 G P E R E {1 - 6 e2 _ 20 e4 + ...1	 (7)

to the fourth power of e.

This result is in complete agreement with the exact expression for a homo-

geneous spheroid given by Lyttleton (1953, p. 36), which is obtained by well-

known integral techniques dealing with rotating liquids:

U = -
 16772

  G pE RE	
e

(1	
el) 

Arc sine

_ - 1 15 2 G p E R E { 1 — 6 e2 120 
ea + ...^

12
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VISCOSITY OF THE MANTLE

The shape of the earth is approximately that of an oblate spheroid. The

flattening factor f, related to the eccentricity through the equation 1 - f =

(1 - e 2)1,12 , which best fits the earth in the least squares sense, is f = 1/298.255

(e.g. Kahn and O'Keefe 1974). If the earth were in hydrostatic equilibrium the

flattening would be f h = 1/299.75 (Kahn and O'Keefe, 1974). Hence the earth is

flatter than predicted from hydrostatic theory, i.e. the equatorial bulge is too

big.

Various mechanisms have been suggested for producing the excess bulge.

Munk and MacDonald (1960) and MacDonald (1966) thought the excess flattening

might be a fossil bulge left over from the remote past when the earth was rotating

faster. This implies the earth has a "long memory" (roughly 10 7 years), or a

high viscosity (about 10 26 poises), if a linearly viscous fluid is assumed to be

the appropriate rheology. Goldreich and Toomre (1969) strongly indicated that

there is no fossil bulge at all; subtraction of the hydrostatic bulge shows the

earth to be a distinctly triaxial object. They felt that the irregularities in the

earth's gravity fieid might be a by-product of mantle convection and that the

viscosity was several orders of magnitude smaller than 10 26 poises. The

irregularities would then steer the rotation axis to a position which maximizes

the polar moment of inertia, thus producing the excess bulge. Wang (1966)

thought the excess flattening might be due to heavy glaciation at the poles,

which would squeeze out a bulge due to the weight of the ice. This view was

13
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criticized by McKenzie (1966), Kaula (1967), and O'Connell (1971); they indicated

the ice caps would have to be unacceptably large to produce the extra flattening.

Kahn and O'Keefe (1974), however, showed that glaciation in Antarctica probably

produced the gravity field's large third harmonic, giving the earth its "pear

shape. " Jeffreys (1970, pp. 429-432) felt the earth has finite strength.

We will not speculate upon the cause of the excess flattening here, but merely

note that it exists and use it to estimate a lower limit for the viscosity of the

mantle. Our argument depends upon the excess flattening, the mechanical energy,

viscosity, and heat flux from the earth.

Take the earth to be a homogeneous, oblate spheroid with constant density

and viscosity; thus we will make no distinction between upper and lower mantle

viscosities. The viscosity may, in fact, be relatively constant throughout the

mantle (Cathles, 1975, p. 3).

Let us first assume that the earth has been squashed past its equilibrium

flattening and is now relaxing back to its equilibrium shape. Heat will be

generated as the excess bulge subsides through viscous dissipation, subtracting

energy from E, the total mechanical energy. Hence if we find E, the rate of

change of mechanical energy, we will have the heat flux due to viscous dissipa-

tion, by conservation of energy. Let us proceed to do this.

Let eh , Ch, Wh , and R h denote the equilibrium values of the eccentricy,

polar moment of inertia, rotational speed, and equatorial radius of the earth,

14
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respectively. Let e, C, w, and RE refer to the same quantities at some time t.

Assuming conservation of mass (and volume)

ME= 3777 R (1- e2)1/2 =43
 ;E Rh (1- eh)t/2,

conservation of angular momentum

Cw =Chwh,

and the relationship between the equilibrium eccentricity and angular speed

(Lyttleton, 1953, p. 38)

W2	 3 -2e2	 ( 1 -e2)fi_	 h 	 (1_e2)1/2 are sine- 3	 h

27TGTE 	 eheh

and using eq. (7), we have for the kinetic energy T and gravitational potential

energy U at time t

T= i Cw2 .., 1577 2 G;52 R5	 2 e2 - 1 e4 - 2 e2 e2
2	 i5	 E h [15 h 63 h 45 h

U ^' - 
1 5„2 

G P E Rn [1 6 
eh 

6 
eh	

45 e4]

to order e4 , where a is the only quantity in the above equations which varies

with time. Adding the two equations together gives



E=T+U-+115 
2 

GpER 5 -1+30 eh

+^ eh 
+ 45

2

115 G p E Rh ^- 1 15 fh + 105 f h + 45 (f - f h )2J	 (8)

where we have used 2f = e 2 and 2f 'I-'I-e2.

Darwin (1879) worked out the relation between the viscosity and the flatten-

ing. It is for second degree terms

f = f  +6f

where

2Q PE aE t

A  = Afo e	 i97

A fo being the excess flattening at time t = 0, g the gravitational acceleration at

the earth ' s surface, and 77 the viscosity. Substitution in eq. (8) yields

E- 1677 2
 GpERh [-1+ 15 fh+ 10S fh+45 

(af)21

Differentiation of this expression with respect to time yields

16
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16 7T 2 GPERh - 45 g	 a  
(^f) 2 	(9)

9 n

Taking t to be the present time and 4f = f - fh = 1/298.255 - 1/299.75 gives

E ^_' 4.05 x 10 40 /77 ergs/sec as the present -day heat now due to viscous dis-

sipatton. The values for f and f  refer, of course, to the real earth and not

homogeneous spheroids; but they should be good enough for our purposes.

Now E must certainly be less than the observed total geothermal flux from

the earth of 3.15 x 10 20 ergs/sec (Stacey, 1969, p. 280), which is believed to be

primarily due to radioactive heating. Thus

E^'4.05x 10 40/77 ergs/sec ^ 3.15x 10 20 ergs/sec

or 77 ? 1 .3 x 10 20 poise8. This is certainly in agreement with the observed

Fennoscandian uplit., which gives 71 ti 1022 poises, the number preferred by

some as the viscosity of the mantle (e.g. Cathles, 1975, pp. 1-4).

Instead of relaxing, the excess bulge might be dynamically maintained through

the earth ' s action as a heat engine. Goldreich and Toomre (1969) suggested that

this is indeed the case: the gravity anomalies are a by-product of convection.

Stacey (1967; 1969, pp. 209-210) estimated the efficiency of the earth's heat

engine at less than 10 per cent. If one per cent of the earth 's heat flux is used

to maintain the excess bulge, then the viscosity is 10 22 poises, in agreement

with Cathles (1975). Smaller efficiencies of course yield higher viscosities.

17
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It is worth mentioring that Paddack's (1967) observation of the nodal

acceleration of an earth satellite also permits a lower limit to be put on the

viscosity. The nodal rate f , of z satellite is proportional to J 2 = — C20 term	 Y

in the gravity field expansion. Since J2 is also proportional to f for a homo-

geneous oblate spheroid, we have n^ _ - Kf, where K is a constant of no concern

to us here. Differentiation with respect to time and division by f2 s yields

0 2 _©f 29PggE
f	 197

s

Paddack found the left side to be zero to one part in a million. This gives

77 ? 2 x 10 15 poises, which is smaller than our limit by five orders of magnitude. 	 R
r

Thus our heat flow argument puts a more stringent lower limit on the viscosity

than does the observation of the satellite.

DISCUSSION

McKenzie (1966) estimated the second degree gravitational potential energy

at -2.02 x 10 30 ergs, a factor o; ten larger than our estimate of -2.77 x 1029

ergs. We can clear up this discrepancy by noting three things about McKenzie's

analysis. First, there is a spurious factor of 4 v in his equation for dm (the

third equation above his eq. (10)). Second, his gravitational potential coefficients

C j (using our notation) differ from our normalized coefficients Chi by the

relation C41 = (2 - 80m)1/2 C ^i . He erred in using the numerical values of

C41 for his values of C 	 in computing the energy. Last, his procedure for

18



deriving the gravitational energy is slightly inconsistent: in some places in the

derivation a spherical surface is assumed and in others a deformed surface.

If a spherical surface is consistently assumed (i.e. using his eq. (6) for the

potential coefficient), and the above factors of 477 and (2 - 60. )112  are noted,

then his eq. (10) becomes identical with our eq. (6).

MacDonald (1966) after a lengthy analysis estimated that 2 x 10 34 ergs of

gravitational potential energy was pent up in the earth, a factor of 10 5 larger

than our estimate of total energy release of 2 x 10 29 ergs, which may be derived

from our eq. (9). Use of MacDonald's figure in our viscosity argument results

in 77 = 10 26 poises, in agreement with the number given on his page 227. This

assumes, however, that the entire geothermal flux comes from viscous dis-

sipation. Attributing part of the heat flow to radioactive heating results in even

higher values. Such viscosities rule out convection on a meaningful time-scale;

the mantle would not overturn even once in the entire history of the earth.

Adoption of our much lower number does not necessarily rule out convection.

But we can make no statement as to the actual value of the viscosity: il principle

it could be any value above 1.3 x 10 20 poises. However, a thermodynamic

efficiency of one per cent yielding 10 22 poises is suggestive.

We can answer two questions raised by Kaula (1967, pp. 790 and 792).

First, he wondered whether the energy associated with the gravity anomalies

would become available as heat should the anomalies disappear. The answer

depends delicately on the shape of the earth and its internal density distribution.

19
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The energy associated with the relaxation of an oblate homogeneous spheroid

produces heat, as we have found in the last section; i.e. the mechanical energy 	
i'm

decreases. But the gravitational potential energy increases when the anomalies

disappear in a spherical earth, as evidenced by our eq. (5). Therefore computa-
M

tions involving the gravitational energy must be done with great care. Second,

Kaula wondered whether the harmonics in a shell of matter interacted only with

themselves to produce self-energy. Our derivation answers this question in the

negative: the gravitational energy arises through the interaction of each har-

monic of a shell with the same harmonic in the other material composing the

earth.

We bope to have answered at least some of the questions surrounding the
I

topic of the earth's gravitational potential energy. Future investigations should

prove fruitful in clarifying still further our understanding of the physics of the

earth.
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Figure 1. Bringing in a mass dm from infinity to the
surface of the partially-assembled earth of mass
M and radius r.
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Figure 2. Imaginary sphere containing the earth. RE 
is 

the
distance from the center to the highest point on the
earth.
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APPENDIX 1

McKenzie's (1966) equation (10) is, in his own notation,

E= 3A ga M.

C2 + S2
^(Q -1) (2 Q + 1) CIO +	 (Q -1) (2 Q + 1) ( Qm 2 4m1

Q,m#o	 \	 /J)

where g is the gravitational acceleration at the surface of the earth, and a

and M are the mean radius and mass of the earth, respectively. The CQm

and SQ ,,, are his potential coefficients.

The equation can be made to agree with our eq. (6), after corrections, as

stated in the text. Our eq. (6) can also be derived from the equation for the

potential energy for a surface distribution:

U=-2faVdA.

Here a is the surface mass density and V is the potential.

Al-1
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APPENDIX 2

The virial theorem states (Goldstein, 1950, p. 70): 	 is
♦ ♦ 	 Y

-2 ( T) = <FFi ri >
;

where T is the kinetic energy of the earth, Fi and ri are the total force on
.w

and the position of the ith particle of the earth, respectively, and the angular

brackets denote time - averages. We will henceforth drop the brackets.

For small perturbations in the positions of the particles the above equation

becomes

-2 6T =	 Fi • a ri
i

_ Fi b ri + ^ Fi b ri
i

where we have decomposed the total force on each particle into the gravitational

and elastic forces. The right side of the equation is nothing more than the work

done, which is equal to minus the change in energies, so that

2 AT = SU + SW,

where U is the gravitational energy and 5W is the elastic energy.

if

3T I « I aU It

PON

A2-1



ilk.

then

bUa - SW,

which is the statement desired.

To test the inequality, we note that

I bUI	 I Uz "I ^ 3 x 1029 ergs.

For b T to approach 'U2"xl in value, we would have to have particle speeds

V such that

40- a

6T- 2 ME VZ -_ 3 x 1029 ergs

or V = 10 cm/sec. Since V is more like 2 cm/year, we can assert the in-
	 t

equality with confidence (assuming heat plays no role in the energy balance).

A2-2
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